2022.05.09
現在、日本の工場の外観検査工程で現場が直面している課題が、検査要員の省人化と目視検査の精度向上への取り組みです。とりわけ鍵となるのが不良品の「過検出」と、それに伴う良品の「廃棄ロス」です。
パナソニック ソリューションテクノロジー株式会社は、1988年に創業し、パナソニックの「製造」をDNAとして持つ技術集団です。グループのシステムインテグレーション会社として、デジタルの技術「IT」と運用のスキル「OT」をもとに現場の人を様々な課題からカイホウ(解放)することを目指しています。世の中に先駆けてAI外観検査ソリューションの開発にも力を注いできました。これまでのパナソニック ソリューションテクノロジーの取り組みと、最新のAIを活用した外観検査ソリューション「WisSight」について、ITコンサルティング部AI画像認識・外観検査技術担当の中尾雅俊さんにお話を伺いました。
目次
同じように多くの製造業が早くから工場の外観検査工程の自動化に動き出していますが、そこで重要になっていることの一つが、既存画像検査で自動化が難しい「感覚的な検査」です。既に外観検査機として普及している一般的な手法は「パターンマッチング」です。これは正常品を元に作成したパターンを検査対象に重ねて、輪郭線に差分があった場合をNGと扱う手法です。 そのため、輪郭線がはっきりしたキズは検知できるのですが、輪郭がぼやけた「しわ」「むら」「汚れ」といった人の感覚を頼るような検査は難しいのです。かえって傷に見えるような「影」を異常と検知してしまうこともしばしばあります。
これは実にもったいない話なんですが、実際に人が目視検査する人件費よりも、自動で検出した不良品を全廃棄するほうが経済的であるというのが当時の「大量生産」時代の経営判断でした。しかし、サステナビリティやエコを目指す現在は、地球の資源である原材料を大切に使わせて頂くという方針に大きく舵を切りました。これまで既存の検査機でNGとされたワークを、AIの外観検査に送ることでAIで「正常品を救済する」という大きな目的を持つようになりました。
工場の現場が目指しているのは、発生した不良品をいかに取り除き「不良そのものを出さない」ための未然対策です。ですから品番変更で多少の条件が変わったとしても、しっかり不良が検知できるような仕組みづくりにAIの活用が期待されています。
一方で、現場の関心は「まずは現状を知りたい」ということです。不良品の発生の現状を知ったうえで、優先度の高いものから原因をつぶしていくような、その改善のサイクルによって全体の生産効率を上げていくというのが正しいやり方という考えがあります。具体的には、原材料が変わったり、製造装置の設定を変えたり、気温や湿度の変化に対して不良が多く発生していないかというデータを取得し、これをAIで分析・解析できないかと考えています。
既存の外観検査機のパターンマッチングでNGになっても原因分析ができないことも課題です。従来の画像検査というのは、正常のパターンから外れているものを不良品と認識しているだけに過ぎません。これは、高速に不良を弾くという目的では効果的なのですが、実際には、本当はどのような不良の種類であって、その不良の原因が何で発生したのかというところまでを知りたいというニーズが現場にはあります。どの種類の不良がどの程度発生しているかを把握することができれば、対策の優先順位を決めることができます。不良発生時の状況を改善フィードバックすることによって、前工程での変化から因果関係を追跡し、不良の原因自体を究明することで不良の発生そのものを抑え込みたいという狙いがあるのです。
一般的な外観検査AIサービスの多くは「不良品の画像を使って学習」する仕組みです。見た目が同じようなものに対して、ごくごく微小な割れやキズなどの不良を見つけるために用いられています。もちろん「WisSight」もそのような製造業のラインで製造される工業製品の外観検査にも対応していますが、パナソニック ソリューションテクノロジーがフォーカスをしているのは、製造現場から流通、サービス、保守メンテナンスに至るまで、あらゆる現場で発生する目視に関わる課題全てからのカイホウです。
例えば、製品を製造している装置が正常に動作しているか、パレットやフォークリフトが適切な位置にあるかどうか、棚に商品が正しく陳列されているかなどが挙げられます。道路や橋梁などの点検業務では、「道路にひびが入っているか」など点検技士による目視点検が行われています。食品加工の現場では、「お肉が何等級かを見分ける」といった熟練者の目視が必要なケースなども考えられるでしょう。お客様の現場で人に帰属して保有している「現場力」とも呼べるこの力をどのようにしてソリューションに変えて、企業の競争力にするかが大切です。そのお手伝いをするために、様々な課題に対応する手段として5種類のAIモデルを準備しました。
ちなみに、初期段階で作成したAIモデルを使うことで本物の不良品が集まったタイミングで、疑似画像は学習画像からは外します。不良品が準備できるなら、本物の画像を使用するのが原則です。
このような機能を搭載しているのも、現場の課題を現場の人たちが自ら対処できる環境づくりを目指しているパナソニック ソリューションテクノロジーならではです。様々な現場を見てきたパナソニック ソリューションテクノロジーだから「不良品が集まらない」「品番違いの対応が必要」といった現場の声を独自の機能として提供できるのです。
注目したいのは、こうしたAIモデルを現場で「使える」ようにするには、複数のAIモデルを並列かつ高速に実行する必要があるという点です。
人は誰かと相対したとき、相手を目視する場合は、一瞬のうちに顔の表情であったり、服装であったり、靴であったりを見て判断します。大まかに全体を見たり、細かいところを局所的にみたりと柔軟です。素晴らしい能力ですが、AIはというとあらかじめ見たいものを教えておく必要がありますので、複数の方向から画像を撮影したり、小さいものを検知するために画像を分割処理して評価する必要が出てきます。
ですから、一つの対象物を検査する場合、意図しなくても複数回処理をしなくてはいけなくなるという事態が多く発生します。「WisSight」は標準エッジソフトウェアとして、複数の画像に対して異なるAIモデルを並行処理できるように開発を行っています。ライセンス体系も、後から検査したい項目が増えたといった場合でも追加の費用なく、お客様自身でAIモデルを新たに追加して使うことができる仕組みになっています。
また、お客様の多くが製造現場ですから、基本オンサイト保守が3年付いているというのはありがたいです。また、供給がかなり継続的に生産されているということもあって安心して提案することができています。
特に、提案する側としては新しい機種をお試しで貸し出していただけるのが、すごくありがたいです。買ってみないと試せませんというのではなかなか使いづらいのですが、HPワークステーションには「これだったら使える」があるので、お客様にも提案しやすいと感じています。
「WisSIght」ならこのような熟練者の感覚的な判定をAIに反映させることができます。はじめに、誰が見ても正解が分かる「完全にNG」「完全にOK」の画像でAIモデルの基礎に当たるものを作ります。その後、OKかNGか境目となるようなワークを、目視検査の熟練者に判定してもらい「判定基準」を表現するための教師データを作成します。この教師データを使ってAIモデルを作成し「熟練者の感覚をAIに反映」させるのです。 熟練者の感覚をもったAIが分析・判定し、生産ライン数に関係なく同一基準で判定を均一化することを実現しました。
「WisSIght」の導入によって、オペレーション時間の大幅な削減に成功しました。また、「AIで分類した不良原因ごとの発生頻度」と「生産条件」を関連付けたデータを蓄積していくことによって、前工程へ改善のフィードバックを実現しています。
展示会にみられるような製品の傷を検知するデモなどは、どこの外観検査ソリューションでもだいたいできると思いますが、現場で発生している課題はそんなに単純ではありません。外観検査の項目は、キズ、バリ、ムラ、欠けなど様々です。AIがそのうちの「小さな傷」のNGを検知できたとしても、ほかの項目の一つでもAIが判定できなければ、そのために製品を人が目視しなければなりません。検査員が削減できなければコスト削減につながらないとの理由で、AIの導入自体を諦めてしまうケースも珍しくありません。
また、工場の生産工程の効率化は、製品の不良検査に注目が集まりがちですが、これまでに蓄積してきたデータの利活用という視点も大切です。例えば、工場に設置してある監視カメラの映像は、もしも何か事故が起こった時のために見直すために保存しているお客様が結構いらっしゃいます。でも実は映像にはすごい情報が蓄積されていて、情報をうまく取り出すことができればものすごいデータベースになると思います。でも実際には、「もう全部見切れません」といって諦めているケースがほとんどなのです。
現在現場でお困りになっている目視作業の課題に加え、もう諦めてしまっている作業にも一歩踏み込んで、現場の効率化をご検討いただきたいと考えています。
これからもパナソニック ソリューションテクノロジーは、現場の作業担当者、その現場を効率よく回そうとするマネージャー や 会社の経営者が抱える 様々な課題を、我々が持つ技術(IT)と経験(OT)でカイホウし、お客様がもっとクリエイティブな活動に時間を割くことができる環境実現を目指します。
本日は、どうもありがとうございました。
現場の課題からカイホウしてくれるAIソリューションの本質は何か。それは、長年にわたり現場で蓄積された「運用スキル」の裏打ちだと思いました。私たちは「新システムの導入」「分析に必要なデータと蓄積」のようにどこか足し算的なAI開発を考えがちです。パナソニック ソリューションテクノロジーの最新の技術(IT)と、制御・運用技術(OT)の掛け算に製造現場の変革の突破口をみました。本来、業務改善は外部に言われて導入するものだけではなく、企業文化として自らで課題を解決する姿勢が求められます。AIの技術を活用して自らの課題をカイホウしていく力とそれを支援する経験豊かなパートナーの存在が大切です。
※本インタビューの掲載先はAIポータルメディア「AIsmiley」となります。
HP Z4 G4 Workstation
充実のパフォーマンスで
あらゆる業務に適したスタンダードモデル
最新のインテル® Xeon® プロセッサー、NVIDIA® およびAMDの高性能グラフィックス、HP Z Turboドライブを搭載可能。さらに、HP Z4 G4 Workstation には8本のメモリスロット、SATAポートを6ポート内蔵するなど、拡張性も抜群です。ハイエンドワー クステーションに求められるパフォーマンスを余すことなく凝縮しました。3D CAD、高解像度映像の 編集、ゲーム開発、医療など、あらゆる分野で活躍します。