

構造解析性能比較資料

Abaqus/Standard SOLIDWORKS Simulation

株式会社 日本 HP サービス・ソリューション事業本部 技術本部

2022年7月

システム構成

CPU

05

メインメモリ

ストレージ

: Xeon Gold 6246R (3.4~4.1GHz, 35.75MB Cache, 16core) x2

: 96GB (2933MHz, 8GB x 12枚, 6チャンネル)

: 1TB HP Z Turbo Drive G2 (NVMe SSD)

: Windows 10 Pro for Workstations

ソフトウェア1 : Abaqus 2022

ソフトウェア2 : SOLIDWORKS 2022 SP2.0

NEW!!

Z2 Tower G9 Workstation

CPUパターン1 CPUパターン2 メインメモリ

ストレージ OS

ソフトウェア1

ソフトウェア 2

Core i7-12700K (2.7~5.0GHz, 25MB Cache, 8+4core)Core i9-12900K (2.4~5.1GHz, 30MB Cache, 8+8core)

: 64GB (4000MHz, 16GB x 4枚, 2チャンネル)

: 1TB HP Z Turbo Drive G2 (NVMe SSD)

: Windows 10 Pro

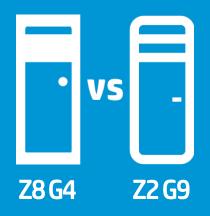
: Abaqus 2022

: SOLIDWORKS 2022 SP2.0

Intel 第12世代CPUのアーキテクチャ

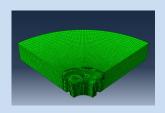
Z2 G9シリーズに採用された第12世代のCPUはパフォーマンスコアという性能重視のコア、エフィシエント コアという効率重視のコアに分かれており、クロック周波数も大きく異なります。

P-core	P-core	P-core	P-core	E-core	E-core
				E-core	E-core
P-core	P-core	P-core	P-core	E-core	E-core
				E-core	E-core


CPUモデル	コア数	クロック周波数
Core i7-12700K	12 (P-core : 8) (E-core : 4)	P-core : 3.6~4.9GHz E-core : 2.7~3.8GHz
Core i9-12900K	16 (P-core : 8) (E-core : 8)	P-core: 3.2~5.1GHz E-core: 2.4~3.9GHz

Blueprint Series 12th Gen Intel® Core™ Processorsより引用

Abaqus/Standard ワークステーション比較

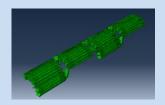


ベンチマークモデルの紹介1

イメージ図 概要

"s2b"

要素数:145,480 接点数:619,978


要素タイプ: C3D20R (20-node quadratic brick, reduced integration)

"s3d"

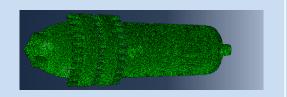
要素数:570,392 接点数:862,904

要素タイプ: C3D10 (10-node quadratic tetrahedron)

"s5"

要素数:15,764 接点数:29,588

要素タイプ: C3D8 (8-node linear brick)


: SFM3D4R (4-node quadrilateral surface element, reduced integration)

ベンチマークモデルの紹介2

イメージ図 概要

"s8"

要素数:424,649 接点数:649,648

要素タイプ: C3D10M (10-node modified tetrahedron, hourglass control)

: C3D8R (8-node linear brick, reduced integration, hourglass control)

"s10"

要素数:1,661,521接点数:1,664,100

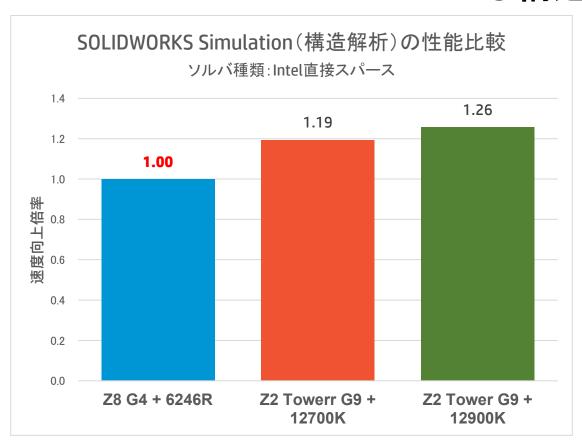
要素タイプ: S4R (4-node doubly curved general-purpose shell, reduced integration,

hourglass control, finite membrane strains)

"s11"

要素数:493,039 接点数:512,000

要素タイプ: C3D8R (8-node linear brick, reduced integration, hourglass control)


ベンチマーク情報

	· · · · · · · · · · · · · · · · · · ·			
ワークステーション	Z8 G4 Workstation CPU : Xeon Gold 6246R x2CPU (3.4~4.1GHz, 35.75MB Cache, 16core)	Z2 Tower G9 Workstation CPU : Core i9-12900K (2.4~5.1GHz, 30MB Cache, 8+8core)		
MPI種類	Microsoft MPI (MS-MPI)			
並列数のパターン (CPUコア数)	2/4/8/12/16/24/32	2/4/8/12/16		
ベンチマークモデル	6ケース (s2b / s3d / s5 / s8 / s10 / s11)			

SOLIDWORKS Simulationによる構造解析

- 12700Kは6246Rに比べて19%速く、12900Kは26%速い結果になりました。
- ・SOLIDWORKS Simulationによる解析 実行中のCPUの動きを確認すると、 6246Rの32コアにおいても最大で約 50%の使用率であったため、16コア 程度しか使用されず、残りのコアは 未使用でした。

Thank you

